
Integrating C++ Classes
Into Delphi Applications
by Mzwanele

This article describes how to
use C++ classes in your Delphi

applications without having to
know the intricacies of OLE 2.0 or
how to write OCXs. You will be able
to manipulate C++ objects as
Delphi objects using properties,
methods and events, or by creating
Delphi components which use C++
proxy objects. All this comes cour-
tesy of the Microsoft Component
Object Model, or COM. Using these
techniques I’ll develop a Delphi
component for the horizontal
slider control from the Borland C++
Object Windows Library 2.5.

The Component Object Model
It seems that defining COM is
nearly as difficult as defining the
term object. The Microsoft view is
that COM is a component architec-
ture which gives users of this
model the ability to develop appli-
cations built from components,
supplied by different vendors and
developed in different languages.

The component object is used as
a building block in a larger system.
Usually the component object has
data associated with it (much like
an OOP object), but the data
should not be freely accessible out-
side of the component. Rather, ac-
cess to the data should only be
given through a published inter-
face (the COM interface), using
methods. COM therefore allows
transparent access to components
whether on the same system
(across process boundaries) or on
network processes.

The COM Interface
Access to a component object is
achieved through a pointer, or
rather a pointer to an array of
pointers. A component object
contains a pointer to a virtual func-
tion table (VTBL; or in Delphi
parlance, a virtual method table),
which holds pointers to the

object’s virtual methods. To ac-
cess a specific member function,
the pointer to the component
object is de-referenced and a call is
made through the VTBL to the
method. The COM interface is re-
ally just a group of related func-
tions through which the calling
application can communicate with
the component. Figure 1 shows an
object’s virtual method table
layout. More extensive explana-
tions of this model can be found in:
➣ Delphi OLE Automation Servers,

by Danny Thorpe, from
 http://www.borland.com/
 News/techlib/autosrv/
 autosrv.html

➣ Using Borland’s Delphi and C++
Together, by Alain Tadros and
Eric Uber, from
 http://www.borland.com/
 News/techlib/ brick.html

➣ The Revolutionary Guide to
Delphi 2, Chapter 17, WROX
Press, ISBN 1-874416-67-2.

Using A C++ Class In Delphi
It should now be clear that COM
can be used by any language which
can call functions via pointers.

Thus a C++ object can be used in
Delphi, by putting it into a DLL and
allowing the Delphi application to
gain access to the C++ object
pointer. On the Delphi side a class
is created with an “empty” VTBL
which has the same layout as the
C++ class’s VTBL, this class is then
used to “control” the C++ object.

The process is as follows:
1. Declare a class in the C++ DLL,

with exportable virtual methods.
2. Create an exported function

which instantiates the C++ class
dynamically. This function should
also return a pointer to the C++
object. A second exported function
is required which is used to de-
stroy the C++ object once it is no
longer needed.

3. Create a Delphi interface class
with (virtual abstract) methods
sequentially matching all the C++
class’s virtual member functions
(private, protectedF255P255D and
public). The reason for this is to
have the Delphi object’s VTBL map
directly onto the C++ object’s
VTBL. Thus every entry in the
Delphi object’s VTBL will have a
corresponding entry in the C++

➤ Figure 1: Object virtual method table layout.

32 The Delphi Magazine Issue 15

object’s VTBL, creating a one to
one relation between the Delphi
VTBL and the C++ VTBL.

4. The Delphi EXE should import
the C++ object creation and de-
struction functions from the DLL.

5. Implement Delphi event
handlers in C++.

Well that’s the theory! Let’s look
at a basic example to demonstrate
the techniques.

Listing 1 shows the C++ class
declaration required for Step 1
above. In 16-bit the C++ class must
be declared as _huge; this modifier
produces a far VTBL, allowing vir-
tual methods to be called from out-
side the DLL.

The virtual methods used from
the DLL all have to be exportable.
In 16-bit use the -WD compiler
switch to set all functions as ex-
portable. In 32-bit all functions are
exportable by default.

Now for Step 2, the exported C++
object creation and destruction
functions. These are shown in List-
ing 2. The function that is exported
from the DLL to give access to the
C++ class is specified as extern “C”,
instructing the compiler not to
“mangle” the function name.

Although this example only dem-
onstrates the creation of one ob-
ject, further instances of C++
objects will be tracked and deleted
by the DLL.

Listing 3 shows Step 3: the Delphi
interface class. The Delphi inter-
face class’s methods which map to
the C++ class’s virtual functions are
declared as virtual abstract,
which means the methods are not
implemented in the Delphi code
but a slot is reserved for the func-
tion pointer in the VTBL. Thus the
Delphi interface class’s VTBL is
identical to the VTBL of the C++
class.

The most noticeable difference
between the Delphi and the C++
class is the use of properties in the
Delphi class, which of course does
not have an equivalent in C++. In
Delphi properties are manipulated
using accessor methods, or simply
“get and set” functions:

property DLLValue: integer
 read GetValue
 write SetValue;

// In 16-Bit:
extern “C” {
TDLLClass* _pascal _export ConstructClass()
{
 return new TDLLClass;
};
void _pascal _export DestructClass(TDLLClass *DLLClass)
{
 if (DLLClass != NULL)

delete DLLClass;
};
}

// In 32-Bit:
extern “C” {
TDLLClass* _cdecl _export ConstructClass()
{
 return new TDLLClass;
};
void _cdecl _export DestructClass(TDLLClass *DLLClass)
{
 if (DLLClass != NULL)

 delete DLLClass;
};
}

➤ Listing 2

// In 16-bit:
// These #pragmas are only needed in the 16-bit version of the code
#pragma option -xc //Safe exceptions
#pragma option -WD //makes all functions in a DLL exportable
class _huge TDLLClass{
 char Buffer[80];
 int InternalValue;
 TEvent FEvent;
 virtual void _pascal SetValue(int Info);
 virtual int _pascal GetValue();
 virtual void _pascal SetEvent(TEvent func);
public:
 TDLLClass();
 virtual void _pascal ShowThevalue();
 virtual void _pascal DoEvent();
};

// In 32-bit:
class TDLLClass{
 char Buffer[80];
 int InternalValue;
 TEvent FEvent;
 virtual void _pascal SetValue(int Info){InternalValue = Info;}
 virtual int _pascal GetValue(){return InternalValue;}
 virtual void _pascal SetEvent(TEvent func){FEvent = func;};
public:
 TDLLClass():InternalValue(0){FEvent.Code = NULL;};
 virtual void _pascal ShowThevalue();
 virtual void _pascal DoEvent();
};

➤ Listing 1

{ In 16-bit: }
{ Mirror of the real C++ class - note the additional method attributes }
TDLLClass = class
 procedure SetValue(Info : integer); virtual; abstract;
 function GetValue : integer; virtual; abstract;
 procedure SetEvent(func : TNotifyEvent); virtual; abstract;
public
 procedure ShowTheValue; virtual; abstract;
 procedure DoEvent; virtual; abstract;
 property AnEvent : TNotifyEvent write SetEvent;
 property DLLValue: integer read GetValue write SetValue;
end;

{ In 32-bit: }
TCPPNotifyEvent = procedure(Sender: TObject) pascal of object;
TDLLClass = class
 procedure SetValue(Info : integer); virtual; pascal; abstract;
 function GetValue : integer; virtual; pascal; abstract;
 procedure SetEvent(func : TCPPNotifyEvent); virtual; pascal; abstract;
public
 procedure ShowTheValue; virtual; pascal; abstract;
 procedure DoEvent; virtual; pascal; abstract;
 property AnEvent : TCPPNotifyEvent write SetEvent;
 property DLLValue: integer read GetValue write SetValue;
end;

➤ Listing 3

November 1996 The Delphi Magazine 33

We can supply these “get and set”
methods from within the C++ class,
as shown in Listing 4.

Delphi 2.0 uses the fastcall (or
register) calling convention by de-
fault, therefore you need to explic-
itly specify the calling convention
of the virtual methods as pascal
calling convention.

Now we move onto Step 4: im-
porting the object creation and de-
struction functions into the Delphi
EXE. For the Delphi code to be able
to instantiate the C++ class in the
DLL, it has to call a function in the
DLL which must be imported by
the Delphi EXE. In 16-bit:

function ConstructClass :
 TDllClass; far;
 external ’CPPDLL’;

and in 32-bit:

function _ConstructClass :
 TDllClass; cdecl
 external ’CPPDLL32’;

Because the C++ object is created
dynamically, we would like to de-
allocate the memory used by the
object when we no longer have any
need for the object. For this pur-
pose we call an imported function
in the C++ DLL to destroy the C++
class. In 16-bit:

procedure DestructClass(
 DLLClass :TDllClass);
 far; external ’CPPDLL’;

and in 32-bit:

procedure _DestructClass(
 DLLClass : TDllClass);
 cdecl external ’CPPDLL32’;

Finally, we need to implement
event handlers in C++: Step 5. The
event property will enable us to
delegate some of the C++ object’s
behaviour to a Delphi object in the
EXE. As a result, should an event
occur in the C++ object, a Delphi
object method will be called.

In general, calling a function us-
ing a pointer is not very difficult.
However calling an object’s meth-
ods using a pointer is more
complex. This is because in most
OOP and mixed-OOP languages a

“hidden pointer” is passed to a
method when it is called. This
“hidden” pointer is the “this” or
“Self” pointer of the object. It
enables the function to access the
data of that particular instance of
the object. So, to be able to call an
object’s method via a pointer you
actually need two pointers: one
which points to the method and
another one which points to
the object instance. Delphi uses
this technique to implement its
delegation model.

Event properties or method
pointers are referred to as “clo-
sures”. A closure is a structure con-
taining everything necessary to be
able to call a method of an object.

Delphi uses the TMethod struc-
ture to implement closures. This
structure contains two pointers:
one pointing to the address of the
class method and a data pointer
which points to the instance of the
object. TMethod is defined in
SYSUTILS.PAS:

TMethod = record
 Code, Data: Pointer;
end;

To implement event handlers in
C++ the TEvent structure is used,
which is the equivalent of the
TMethod structure in Delphi – see
Listing 5.

To call a Delphi event handler in
C++ we use:

virtual void _export _pascal
 TDLLClass::DoEvent()
 {
 if (FEvent.Code != NULL)
 ((TNotifyEvent)FEvent.Code)
 ((const void *)this,
 FEvent.Self);
 }

The Delphi object’s method is
called by de-referencing the code
pointer and passing the Delphi ob-
ject’s instance pointer as the last
parameter of the function, because
the Delphi method uses the Pascal

{ In the Delphi class: }

{ In 16-bit: }
TDLLClass = class
 ...
 procedure SetValue(Info : integer); virtual; abstract;
 function GetValue : integer; virtual; abstract;
 ...
end;

{ In 32-bit: }
TDLLClass = class
 ...
 procedure SetValue(Info : integer); virtual; pascal; abstract;
 function GetValue : integer; virtual; pascal; abstract;
 ...
end;

// In the C++ class:
class TDLLClass{
 ...
 virtual void _pascal SetValue(int Info);
 virtual int _pascal GetValue();
 ...
};

➤ Listing 4

typedef void _pascal (*TNotifyEvent)(const void *Sender,
 const void *thisPtr);
struct TEvent
 {
 void *Code;
 void *Self;
};
class _huge TDLLClass{
 ...
 TEvent FEvent;
 ...
};

➤ Listing 5

34 The Delphi Magazine Issue 15

calling convention (if the method
used the C calling convention the
instance pointer would be passed
as the first parameter).

The SetEvent method of the C++
class is used in the assignment of
the event property in Delphi. In
C++:

class _huge TDLLClass{
 ...
 virtual void _pascal
 SetEvent(TEvent func)
 {FEvent = func;};
 ...
};

and in Delphi:

TDLLClass = class
 ...
 property AnEvent :
 TNotifyEvent
 write SetEvent;
 ...
end;
procedure TForm1.Button4Click(
 Sender: TObject);
begin
 ACppClass.AnEvent := cProc;
end;

Because the Delphi method which
is assigned to the C++ TEvent vari-
able will be called from outside the
Delphi EXE it must be exportable in
the 16-bit version of the Delphi
code.

When using event handlers in
Delphi 2.0 the normal Delphi
TNotifyEvent type cannot be used
because of the fastcall calling con-
vention used in Delphi 2.0, so we
have to define a new method
pointer type with the pascal calling
convention:

TCPPNotifyEvent =
 procedure(Sender: TObject)
 pascal of object;

We have seen how easy it is to use
a C++ COM class in Delphi code.
Using this knowledge we can now
continue further to create a more
complex interaction between C++
and Delphi. We will create a Delphi
component which uses a C++
Object Windows Library (OWL)
control class: the OWL horizontal
slider class. The slider control will

be visible at design time and its
properties can be changed through
Delphi’s Object Inspector.

OWL To Delphi
In Two Easy Steps
Firstly we create a C++ COM class
in a DLL, which will act as the OWL
control’s interface to the Delphi
component. This C++ COM class
will “carry” the OWL control by in-
stantiating the OWL control and
keeping a reference to the OWL
control.

The OWL control is shown in
Listing 6 and the C++ COM class in
Listing 7.

Secondly, we create a Delphi
COM interface class which maps to
the C++ COM class. This Delphi
class will in turn be “carried” by the
Delphi component and used to

communicate with the OWL
control.

The Delphi COM interface is
shown in Listing 8 and the Delphi
Component in Listing 9.

In simpler terms, we use the
C++/Delphi COM interface to sim-
plify the interaction between a Del-
phi component and a C++ OWL
control. On the surface we have a
very clean and simple symmetry,
as shown in Figure 2.

Windows Practicalities
Looking at this scenario, it seems
as if every Windows message sent
to the OWL control would have to
be handled and the corresponding
event handler in the Delphi compo-
nent called. This would mean that
an enormous amount of accessor
methods and TEvent variables

class TDHSLider : public THSlider, public MessageSink {
 public:

 TDHSLider(TWindow* parent,
int id,
int X, int Y, int W, int H,
TResId thumbResId,
TModule* module = 0):
 THSlider(parent,id,X,Y,W,H,thumbResId, module),
 MessageSink()
 {

 AddOWLClass(this);
 };

 protected:
 void DoChange();
 virtual void SetPosition(int thumbPos);
 virtual LRESULT Dispatch(TEventInfo& info, WPARAM wp, LPARAM lp = 0);

};

➤ Listing 6: The OWL control

typedef void (*TDispatchEvent)(const void *thisPtr, unsigned int Msg,
 unsigned int wp, unsigned long lp);

class FARVTABLE TOWLDelphiControl {
 ...

 TWindow *InternalControl; //Reference to OWL control
 public:

 TOWLDelphiControl();
 ~TOWLDelphiControl();
 void InsertOWLControl(TWindow *IControl);
 unsigned long DoDispatch(uint Msg, WPARAM wp, LPARAM lp);
 virtual void SetVisible(bool aValue);
 virtual bool GetVisible();
 virtual void SetEnabled(bool aValue);
 virtual bool GetEnabled();
 virtual void SetOnMessage(TEvent func);

 virtual void BringToFront();
 ...

};

➤ Listing 7: The C++ COM class

OWL Control <– C++ COM <– DLL/EXE –> Delphi COM Interface <– Delphi Component

➤ Figure 2

November 1996 The Delphi Magazine 35

would have to be implemented in
the C++ COM class. However,
thankfully this is not the case.

Fortunately for us OWL is a well
designed OOP application frame-
work. Each OWL windowed control
has a virtual method called

TCMessageEvent = procedure (aMsg, wParam : Word; lParam: Longint)
 cdecl of object;

TCPPNotifyEvent = procedure (Sender : TObject) cdecl of object;

TCOMInterface = class
 procedure SetVisible(aValue: boolean); virtual; cdecl; abstract;
 function GetVisible : boolean; virtual; cdecl; abstract;
 procedure SetEnabled(aValue: boolean); virtual; cdecl; abstract;
 function GetEnabled : boolean; virtual; cdecl; abstract;
 procedure SetOnMessage(func : TCMessageEvent); virtual; cdecl; abstract;
 procedure BringToFront; virtual; cdecl; abstract;
 ...
end;

➤ Listing 8: The Delphi COM interface:

Dispatch, through which all
Windows messages sent to the
OWL control will pass. By over-
riding this function each message
can be passed on to the Delphi
component through (you guessed
it) a method pointer. The message

is then passed onto the VCL by
calling the Delphi component’s
Perform, method where it is turned
into an event handler, which you
use from Object Inspector. See
Listing 10.

All that is left to do now is imple-
ment event handlers for any
custom events we feel are needed,
for instance an OnChange event.

Dealing With Problem Parents
One last problem to contend with
is the way OWL hooks into a non-
OWL parent window’s window pro-
cedure (WndProc) to create an OWL
parent alias. This would normally
not cause a problem, but in a RAD
environment controls are created
and destroyed as you design your
application, which makes it impos-
sible to safely create and destroy
OWL parent aliases. To get around
this problem all OWL parent ali-
ases are kept track of and re-used
as they are needed. These aliases
are then only released at DLL
unload time (a more efficient tech-
nique would be to use a reference
count).

Using The Code Examples
This month’s disk contains lots of
code for you to experiment with.
Three versions of the basic exam-
ple are provided: one for 16-bit, one
for 32-bit and one which can be
compiled as both 16- and 32-bit.
Each version has a Delphi project
and a corresponding C++ DLL
project compilable with Borland
C++ 4.5.

For the OWL slider example, a
C++ project for the OWL slider DLL
is provided, as well as a Delphi
project and Delphi component.
Again, all are compilable as 16-bit
or 32-bit.

To install the example OWL com-
ponent provided on the disk follow
these steps:
➣ Make a copy of your present

COMPLIB.DCL (Delphi 1.0) or
CMPLIB32.DCL (Delphi 2.0).

➣ Copy the OWLDEL.DLL (be sure
to use the 16-bit DLL with the
16-bit Delphi EXE, the same
goes for the 32-bit version) to
your \WINDOWS or \WINDOWS\
SYSTEM directory.

TDelOwlControl = class(TControl)
 private
 FOnMessage : TMessageEvent;
 procedure FOnMessageExported(aMsg, wParam : Word; lParam: Longint);
 cdecl; export;
 protected
 OWLHelpControl : TCppDelphiControl; {Delphi COM interface}
 procedure VisibleChanging; override;
 procedure SetBounds(ALeft, ATop, AWidth, AHeight: Integer); override;
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 procedure Invalidate; override;
 procedure Repaint; override;
 procedure Update; override;
 published
 property OnClick;
 property OnDblClick;
 property OnDragDrop;
 property OnDragOver;
 property OnEndDrag;
 property OnMouseDown;
 property OnMouseMove;
 property OnMouseUp;
 property Visible;
 end;

➤ Listing 9: The Delphi component

\\This C++ code fragment shows how messages are passed to the
\\ Delphi component from the OWL control:
virtual LRESULT TDHSLider::Dispatch(
 TEventInfo& info, WPARAM wp, LPARAM lp = 0)
 {
 Dispatcher(info.Msg,wp,lp);
 return TEventHandler::Dispatch(info,wp,lp);
 };

{ In Delphi, we pass a message on to the VCL like this: }
procedure TDelOwlControl.FOnMessageExported(
 aMsg, wParam : Word; lParam: Longint);
begin
 if (csDesigning in ComponentState) or
 (csLoading in ComponentState) then
 Exit;
 Perform(aMsg, wParam, lParam);
end;

➤ Listing 10

36 The Delphi Magazine Issue 15

➣ Use the DELCOMPO.PAS to in-
stall the component; it will ap-
pear in the Samples palette page.

Conclusion
Well there you have it, I hope this
will help you to integrate those
painstakingly crafted C++ class li-
braries and help migrate those old
C++ projects more easily.

Please be aware that all the tech-
niques described in this article are
not supported or guaranteed: you
must use them at your own risk!

Mzwanele is a highly experienced
Delphi developer working for an
international software company.
He can be contacted care of The
Delphi Magazine.
Copyright 1996 Mzwanele

➤ Figure 4: The Delphi form at
run time with the OWL sliders

➤ Figure 3: The Delphi
form with OWL sliders
at design time

November 1996 The Delphi Magazine 37

	The Component Object Model
	The COM Interface
	Using A C++ Class In Delphi
	OWL To Delphi In Two Easy Steps
	Windows Practicalities
	Dealing With Problem Parents
	Using The Code Examples
	Conclusion

